UNIVERSITE LOUIS PASTEUR

STRASBOURG

ETUDE DE L'IMPACT D'UN TRAITEMENT DE
RECONSTRUCTION POSTURALE SUR LA PERFORMANCE
SPORTIVE : A PROPOS D'UN CAS

Mémoire présenté par
Mireille Marelli Marmy
Physiothérapeute
En vue de l'obtention du Diplôme Universitaire
de Reconstruction Posturale
ANNEE 2000
N° 46
REMERCIEMENTS

à Mr le Professeur Michel JESEL, qui a rendu la reconnaissance universitaire de la Reconstruction Posturale possible

à Mr Michaël NISAND, pour son enthousiasme, sa passion et sa rigueur dans la transmission du fruit de ses recherches

à Mr Stéphane GRAF, pour son aide et ses corrections avisées

au Dr Frédéric GAZEAU, pour ses explications éclairées sur les tests d'effort et l'entraînement physique

à mon patient, pour sa "patience" justement et sa collaboration

à Michel, pour son soutien informatique et quotidien
RESUME

Nous tenterons, dans ce mémoire, d'établir un lien de cause à effet entre le traitement de Reconstruction Posturale et l'amélioration de la performance sportive.

Toute performance sportive nécessite un entraînement préalable. Et si les effets de cet entraînement étaient dynamisés par un traitement régulier de Reconstruction Posturale ?

La Reconstruction Posturale est un ensemble de techniques de traitement de l'appareil locomoteur mis au point par M. Michaël Nisand, sur la base des travaux et découvertes précurseurs de Mlle Françoise Mézières.

Ce sont les améliorations proprioceptives, ressenties par de nombreux patients traités en Reconstruction Posturale, qui sont à l'origine de ce travail et qui nous ont amené à nous interroger sur la réalité objective de telles sensations.

Certains aspects de la performance sportive se sont améliorés après le traitement de Reconstruction Posturale.

Ce travail est un compte rendu de l'expérimentation menée avec un seul patient et n'a pas valeur statistique, mais laisse la porte ouverte à une mise à l'épreuve plus large de la validité des résultats de l'étude. Bien qu'il existe de fortes présomptions, seule une étude sur un plus grand nombre de sportifs pourrait établir, avec certitude, un lien de cause à effet.
MOTS CLÉS

- Reconstruction Posturale ;
- Performance sportive ;
- Proprioception ;
- Test ergométrique.
SOMMAIRE

RESUME

1. INTRODUCTION ... 1
 1.1. Performance sportive .. 2
 1.1.1. Mesures mécaniques ... 2
 1.1.2. Mesures physiologiques 2
 1.1.3. Economie de l’effort et état après l’effort 2
 1.2. Présentation de la Reconstruction Posturale 3
2. MATERIEL ET METHODE .. 5
 2.1. Population ... 5
 2.1.1. Anamnèse ... 5
 2.1.2. Matériel ... 6
 2.2. Méthode ... 7
 2.2.1. La Reconstruction Posturale 7
 2.2.1.1. Bilan ... 7
 2.2.1.2. Remarques personnelles du patient 8
 2.2.1.3. Déroulement du traitement 9
 2.2.2. Mesure de la performance sportive 10
 2.2.2.1. Tests mécaniques ... 10
 2.2.2.2. Test ergométrique ... 11
 2.2.2.3. Conditions de test ... 14
3. RÉSULTATS .. 14
 3.1. En Reconstruction Posturale .. 14
 3.1.1. Commentaire du patient ... 15
 3.2. En performance sportive .. 16
 3.2.1. Tests mécaniques .. 16
 3.2.2. Test ergométrique .. 17
 3.2.2.1. L’avis du spécialiste 17
4. DISCUSSION ... 18
5. CONCLUSIONS ... 20
1. INTRODUCTION

"Après votre traitement, j'ai couru comme un lièvre !". Quel Reconstructeur n'a pas entendu, dans sa pratique quotidienne, de remarque de cet ordre.

Les patients font état de sensations proprioceptives agréables ce qui leur permet de reprendre une activité, sportive ou autre, abandonnée auparavant, ou de se sentir plus à l'aise et efficace dans leur activité physique.

Nous avons cherché, par une étude de cas, à déterminer si ces sensations proprioceptives agréables et facilitatrices du geste se traduisent par une amélioration objective et mesurable.

Nous avons demandé à une personne sportive d'effectuer une série de tests préliminaires, puis de participer à des séances régulières de Reconstruction Posturale et enfin de se prêter à la répétition des tests de départ dans les conditions les plus similaires possible. Nous avons tenté d'objectiver une réelle et mesurable amélioration du geste et de l'activité physique choisie, en concordance avec les améliorations proprioceptives ressenties par le patient.

Après avoir défini l'activité sportive étudiée et son choix, les tests utilisés et les conditions dans lesquelles ils ont été pratiqués, nous en comparerons les résultats, avant et après traitement, afin de dégager une conclusion, quelle qu'elle soit.
1.1. Performance sportive

1.1.1. Mesures mécaniques

La performance est définie par le Petit Robert comme " le résultat obtenu par un athlète (...) dans une épreuve; chiffre qui mesure ce résultat". C'est ce que nous entendrons par performance sportive tout au long de ce travail : le résultat objectif sera mesuré en kilomètre-heure ou kilogrammes soulevés.

1.1.2. Mesures physiologiques

La performance peut être mesurée à l'étalon des résultats obtenus : vitesse de course, kilogrammes soulevés, etc. mais aussi, grâce aux techniques actuelles, à l'aptitude du corps à faire face à un surcroît de travail. Cette capacité est décrite par des mesures de rythme cardiaque, de concentration du sang en oxygène et gaz carbonique, de consommation d'oxygène pendant l'effort.

1.1.3. Economie de l'effort et état après l'effort

Toutefois, il est un aspect de la performance qui n'est pas mentionné dans le dictionnaire mais qui présente un intérêt dans ce travail, à savoir les conditions mécaniques et physiologiques dans lesquelles cette performance est atteinte : l'économie du geste et du corps pendant l'accomplissement de la performance.

Les tests utilisés pour ce travail de recherche ont permis de jauger la performance sportive sous ces différents aspects : résultats concrets obtenus, état et rendement du corps à l'effort.
1.2. Présentation de la Reconstruction Posturale

La Reconstruction Posturale, fondée par M. Michaël Nisand et basée sur les travaux précurseurs de Mlle Françoise Mézières, peut se définir comme un ensemble de techniques visant à normaliser le tonus des chaînes musculaires et utilise la morphologie pour valider l'efficacité du traitement.

Une chaîne musculaire est "un ensemble de muscles poly articulaires, de même direction, qui se succèdent en s'enjambant sans discontinuité, comme les tuiles d'un toit".

Quatre groupes de muscles répondent à cette définition :

la grande chaîne corporelle postérieure, la chaîne antérieure des lombes, la chaîne antérieure du cou et les deux chaînes brachiales.

Tout se passe comme si, au sein des chaînes musculaires, le tonus s'additionnait.

De ce fait les chaînes musculaires sont hypertoniques et ont tendance au raccourcissement qui succède à l'excès de tonus.

L'hypertonie, puis le raccourcissement des chaînes musculaires, entraînent des déformations morphologiques appelées dysmorphismes*. La puissante et permanente traction des chaînes musculaires sur leurs points d'insertion contraint l'appareil locomoteur à se tordre dans les trois plans de l'espace dans une vaine tentative de relâchement de la tension.

On peut comparer cela à la corde raccourcie d'un arc qui contraint le bois à suivre cette perte de longueur.

Ce sont ces dysmorphismes que le reconstructeur va minutieusement répertorier dans son bilan* initial, ceci afin de guider le traitement ultérieur.

* Les termes signalés par un astérisque renvoient au lexique
Deux séries de photos (face, dos, profils) prises, l'une au début du traitement, l'autre à la fin, servent à mettre en mémoire les dysmorphismes initiaux et sont autant de témoins des modifications morphologiques obtenues.

Le traitement de Reconstruction Posturale consiste en postures* qui se définissent comme des manœuvres* de sollicitation des chaînes musculaires, maintenues de façon à obtenir une augmentation de l'hypertonie avec aggravation d'un dysmorphisme existant ou apparition d'un nouveau dysmorphisme, puis un épuisement de cette hypertonie induite, signé par une disparition du dysmorphisme initié par la sollicitation initiale.

Le principe actif de la Reconstruction Posturale est la sollicitation active inductrice* (ci-après SAI), qui consiste en une contraction volontaire inductrice d'une augmentation de tonus à distance, si possible dans la région du corps la plus éloignée de la contraction initiale. En effet, plus la cible est éloignée de la zone d'induction plus l'épuisement du tonus, but ultime recherché, sera important.

Le traitement de Reconstruction Posturale dure environ une heure et s'applique une fois par semaine en phase d'attaque.

* Les termes signalés par un astérisque renvoient au lexique
2. MATÉRIEL ET MÉTHODE

2.1. Population

Nous présentons un cas unique dans notre étude

2.1.1. Anamnèse

Il s’agit d'une personne de sexe masculin, âgée de trente-huit ans, en bon état général et bonne condition physique, enseignant en éducation physique auprès d'élèves en classe d'apprentissage.

Malgré une pratique sportive régulière, en particulier le football en salle, il ne suit pas d'entraînement spécifique, et en tous cas pas dans les disciplines testées, à savoir la course sur tapis roulant et le développé couché.

Le sujet pratique, de façon régulière, en cours et à titre personnel, le stretching et le stretching postural selon Jean-Pierre Moreau, ceci, dit-il, afin de maintenir son système musculaire et articulaire en bon état de fonctionnement, considérant que c'est son outil de travail et qu’il lui sera utile et indispensable de nombreuses années encore.

Au début du traitement, le patient se plaint de douleurs bilatérales diffuses, de faible intensité aux hanches et aux genoux, sans traumatisme connu, ainsi que d'une fatigue importante des deux pieds au lendemain de journées professionnellement chargées.

Le patient mentionne, en cours de traitement, la disparition d'une douleur diffuse de l'épaule droite dont il n'avait pas parlé lors de l'anamnèse.
Le sujet est très intéressé par un traitement de Reconstruction Posturale dans un but préventif, toujours afin de pouvoir exercer son métier sur une longue durée.

2.1.2. Matériel

Nous utilisons, pour le test ergométrique, le matériel couramment employé lors des tests d'effort de sportifs ou de cardiaques : un tapis roulant pour les tests de course, un cardio-fréquence-mètre placé sur le thorax, permettant de mesurer en permanence le rythme cardiaque et un masque facial pour doser les gaz sanguins (annexe IV).

Pour déterminer la fréquence des foulées, l'examineur compte le nombre de pas effectués sur le tapis roulant en une minute, chronomètre en main.

Toutes les données recueillies sont synthétisées et mises en graphiques par ordinateur.

Pour le développé couché, le patient utilise un banc de musculation simple avec une barre horizontale chargée de disques de fonte qui s'adaptent de chaque côté de la barre (annexe V).
2.2. Méthode

2.2.1. La Reconstruction Posturale

2.2.1.1. Bilan

Nous avons effectué un **bilan** de Reconstruction Posturale comprenant :

un bilan morphologique détaillé en station debout, pieds joints bord à bord ;

un bilan dynamique en appui quadrapédique, en décubitus dorsal et assis.

Précisons que les observations du bilan se font par référence à une morphologie
virtuelle appelée parangon, dont les lignes, idéales, sont symétriques, obliques et rectilignes.

Nous avons complété le bilan par une série de photographies standard (face, profil, dos) avant et après traitement, de façon à pouvoir visualiser plus aisément les éventuelles modifications morphologiques. Elles peuvent être consultées en annexe II de ce travail.

Voici, en résumé, les points essentiels relevés lors du bilan morphologique, dont le texte, in extenso, figure en annexe I :

les orteils sont déformés en griffe, en varus, ou les deux à la fois ;

les pieds présentent une ferme médiale creusée et ont un aspect ramassés sur eux-mêmes ;

le bassin est en antéversion et translaté vers la droite ;

la colonne cervicale est en lordose importante, ce qui rend les quatrième, cinquième et sixième processus épineux impalpables ;

l’épaule droite est avancée et enroulée vers l’avant, la gauche est reculée et tirée vers l’arrière et les clavicules sont trop apparentes; l’épaule droite est plus basse que la gauche ;
les membres supérieurs ne sont pas au contact du bassin; le membre supérieur droit est tiré vers l'arrière, masquant ainsi le contour postérieur du dos sur le profil.

2.2.1.2. Remarques personnelles du patient

Le patient nous a fait part de ses sensations pendant et après le traitement de Reconstruction Posturale, ses notes sont à disposition dans les annexes de ce travail, certaines remarques sont toutefois intéressantes à relever :

" Dès les premières séances, les effets ont été pour moi considérables. Les mouvements sportifs sont plus faciles, plus déliés et la course a immédiatement gagné en vitesse et facilité".

Cet élément est resté, mais d'autres perceptions plus intéressantes à notre avis sont apparues plus tard dans le traitement. L'habileté générale s'est améliorée. Par exemple la manipulation du ballon de football avec le "mauvais pied", l'économie de mouvements dans les sports de raquettes s'est améliorée, moins de mouvements et de force recrutés pour un même résultat." (annexe VII).

Ces remarques confirment les améliorations proprioceptives que peut apporter un traitement de Reconstruction Posturale.

A noter encore que le besoin de pratiquer le stretching après les cours a disparu, le traitement hebdomadaire suffisant à assurer la récupération musculaire après l'effort.
2.2.1.3. Déroulement du traitement

Les séances de Reconstruction Posturale ont commencé le 27 mai et se sont poursuivies jusqu'au 14 octobre 1999, à raison d'un traitement par semaine. Excepté les vacances, cela fait un total de 15 semaines de traitement régulier.

Le patient ne présente pas de pathologie à proprement parler, les postures sont donc également réparties sur les deux blocs afin de cibler les deux régions corporelles les plus déformées : la colonne cervicale avec projection du cou vers l'avant, la ceinture scapulaire avec des clavicules très apparentes et des épaules projetées vers l'avant pour la droite et vers l'arrière pour la gauche ainsi que les pieds, qui présentent une ferme médiale creusée et des orteils soulevés du sol, en griffe et, pour certains, en varus.

Nous avons donc travaillé alternativement depuis les pieds pour atteindre le bloc supérieur*, et depuis les membres supérieurs et la tête pour atteindre le bloc inférieur*.

Il semble que, pour optimiser l'efficacité de la posture*, il importe d'utiliser la plus grande distance possible entre la zone corporelle qui assure la sollicitation inductrice par le biais d'un mouvement de grande amplitude relative* et la zone cible, celle que vise notre posture afin d'y faire baisser le tonus.

Nous avons, de plus, utilisé toutes les positions de travail, décubitus dorsal, positions assises et debout, tout était possible, du fait de la bonne condition physique du sujet.
2.2.2. Mesure de la performance sportive

2.2.2.1. Tests mécaniques

La première mesure mécanique teste spécifiquement la partie supérieure du corps et s'appelle en gymnastique courante le développé couché* (annexe V).

Le patient est en décubitus dorsal, le dos posé sur un banc d'appui étroit, les jambes fléchies. Il s'agit de pousser vers le haut une barre horizontale, chargée de poids. Les épaules sont en abduction à 45 degrés et en légère extension, les coudes sont fléchis à 90 degrés, paumes des mains tournées vers le haut en tenant la barre. Le mouvement est terminé quand les épaules sont en antéposition d'environ 90 degrés, coudes tendus.

Ce test est effectué sur un appareil de musculation qui guide l'élévation de la barre dans le plan horizontal, ce qui permet de concentrer l'effort sur la poussée verticale.

Pour attendre le poids maximum, il faut tâtonner, en chargeant successivement la barre. Il est nécessaire d'éviter un trop grand nombre de chargements, afin que la fatigue musculaire, consécutive à de nombreuses tentatives, ne vienne pas perturber les résultats du test.

Nous commençons la mise en route générale du corps et de la ceinture scapulaire par quelques sauts à la corde.

Puis, afin d'échauffer plus spécifiquement les muscles participant à l'évaluation, le sujet exécute lentement le mouvement vertical, avec très peu de poids sur une longue série.

Ensuite, le test proprement dit commence : la barre est chargée au-dessous du maximum supposé et le sujet réalise la poussée une seule fois.
La charge est augmentée par paliers de 250gr jusqu'à atteindre le poids, supérieur au maximum, que le sujet ne peut soulever en totalité de la course prévue.

Comme pour tous les tests de ce travail, nous avons effectué le développé couché trois fois : une fois avant le début du traitement, une fois après sept séances et une dernière fois après la fin du traitement. Pour les trois tests, cinq chargements consécutifs ont été nécessaires pour atteindre le poids supra maximal.

Les groupes musculaires spécifiquement testés sont : les antépulsateurs d'épaule, les extenseurs de coude, les extenseurs et fléchisseurs de poignet dans un travail synergique de stabilisation du poignet en extension, les fléchisseurs et extenseurs des doigts dans le même travail synergique mais en flexion des doigts.

La deuxième mesure mécanique, l'amplitude des foulées lors de la course, s'est faite pendant le test ergométrique.

Le sujet court sur le tapis roulant à chaque palier, l'examineur compte le nombre de pas effectués en une minute. De cette mesure, l'ordinateur détermine l'amplitude de la foulée en mètre.

Cette mesure en soi n'est pas un critère de performance, cependant, il est à noter que tous les essais pour imposer une cadence et des amplitudes artificielles à un coureur se sont soldés par une augmentation du coût énergétique de la course.
2.2.2.2. Test ergométrique (annexe VI)

Il s'agit d'un test de course sur tapis roulant. Le sportif a choisi lui-même la course plutôt que le vélo; toutefois, l'un et l'autre permettent de mesurer les mêmes variables énumérées ci-dessous.

Le test est de type triangulaire en raison de son aspect graphique et comprend dix minutes d'échauffement de course sur le tapis roulant à 5km/h, avant la mise en place du masque afin de mesurer les gaz du sang et du cardio-fréquence-mètre qui enregistre la fréquence cardiaque. La mise en place de ces appareils signe le début du test proprement dit.

Le sportif effectue des paliers de trois minutes à chaque vitesse avant le seuil anaérobie*, puis de deux minutes à chaque vitesse supérieure à ce seuil, ceci afin que ce ne soit pas l'accumulation trop rapide d'acide lactique qui exige l'arrêt prématuré du test (annexe VI).

La présence d'un cardio-fréquence-mètre sur le thorax du coureur nous informe en permanence, de la fréquence cardiaque pendant l'effort.

Un masque couvre la bouche et le nez du sujet pendant toute la durée de la course et mesure les teneurs en oxygène (O2) et gaz carbonique (CO2). De ces mesures, l'ordinateur est à même de calculer les variables énumérées ci-dessous :

le volume d'oxygène consommé à chaque vitesse, soit VO2 ;

le volume d'O2 maximum soit la consommation d'O2 en réponse à un effort maximal : VO2max.
La VO2 max. est considérée, dans les milieux spécialisés, comme un indice global d'aptitude physique en endurance, car il existe une corrélation directe entre l'amélioration du niveau d'entraînement et l'augmentation de la VO2 max.

La VO2 max. pourrait se comparer à la puissance maximale du moteur d'une voiture, toutes proportions gardées.

L'ordinateur nous permet encore de connaître :

le quotient respiratoire, soit QR, que l'on sait, lorsqu'il approche de un, correspondre au seuil anaérobie*;

la vitesse maximale aérobie, soit VMA, c'est-à-dire la vitesse minimale sollicitant la VO2 max;

l'économie de course au seuil anaérobie, soit économie, qui représente, toutes proportions gardées, la consommation de la voiture aux 100 kilomètres. Cela correspond au coût énergétique pour une vitesse donnée – ici la vitesse au seuil anaérobie – et s'exprime en kcal par kg et par m.

La VMA, l'économie de course et le seuil anaérobie sont avec la VO2 max. les indices les plus significatifs de la performance sportive (cf. bibliographie)
2.2.2.3. Conditions de test

Nous avons demandé au sportif d'éviter tout entraînement spécifique supplémentaire pouvant améliorer les résultats des tests.

Les activités évaluées ont été choisies pour permettre, autant que possible, leur répétition "à l'identique" :

- même position du corps pendant l'effort ;
- même période dans la journée ;
- même examinateur pour le contrôle et l'interprétation des tests.

Les évaluations, autant ergométriques que mécaniques, ont été faites à trois reprises: le premier test avant le début du traitement de Reconstruction Posturale, le second après la septième séance, le dernier après la quinzième et dernière séance.

La répétition des tests permet une certaine fiabilité des résultats, et élimine, autant que possible, les facteurs aléatoires, sur lesquels nous n'avons pas d'influence, tels que l'état du sportif ou la température ambiante le jour du test. Cette précaution permet de dégager une tendance (ou non) au changement.

3. RÉSULTATS

3.1. En Reconstruction Posturale

Le traitement a porté sur l'ensemble du corps.
Nous n'exposons ici que les éléments essentiels et qui présentent un changement notable avec le début du traitement. Un bilan plus détaillé est disponible dans l’annexe III ainsi que les photos de fin de traitement (annexe II).

Les orteils sont moins en griffe qu'au début du traitement, la ferme médiale est plus proche de la normale ce qui donne aux pieds un aspect détendu et allongé. Le patient a d'ailleurs dû changer de chaussures de sport en cours de traitement et prendre une pointure de plus pour être, au sens propre, à l'aise dans ses baskets.

Le bassin s'est replacé et l'antéversion a régressé.

La lordose cervicale s'est harmonisée, la tête s'est replacée au dessus du corps et les processus épineux de C4, C5 et C6 sont aisément palpables.

Les épaules sont plus symétriques car l'enroulement en avant de l'épaule droite a diminué alors que l'épaule gauche est moins tirée vers l'arrière.

La hauteur des épaules est presque identique.

Les clavicules sont moins apparentes.

Les membres supérieurs sont au contact du bassin. Le membre supérieur droit ne masque plus le contour postérieur du dos sur le profil.

Le traitement est, sans conteste, un succès car il a permis des modifications non négligeables de la morphologie du sujet.

3.1.1. Commentaire du patient

Le patient se montre très satisfait du traitement pour plusieurs raisons :
la douleur diffuse de l'épaule droite a complètement disparu et ne s'est plus manifestée, même après la fin du traitement;

le patient a dû changer de pointure de chaussures et ceci n'est pas forcément une amélioration, en tous cas pour ses finances, si ce n'est que, dans le même temps, la grande fatigue, ressentie les lendemains de journées professionnellement chargées, a disparu;

la fatigue physique, liée à la pratique professionnelle, dure moins longtemps et n'est plus ressentie intensément dans les hanches ni, comme nous l'avons dit plus haut, dans les pieds;

la gestuelle sportive est facilitée et l'habileté améliorée, notamment du côté non dominant, pied gauche en l'occurrence;

la course semble au patient plus rapide et plus aisée.

3.2. En performance sportive

3.2.1. Tests mécaniques

L'amplitude des foulées a diminué à chacun des tests. Le coureur a effectué des pas plus petits et cela semble mieux convenir, en terme d'économie, comme nous le verrons plus loin.

L'épreuve mécanique du développé-couché s'est beaucoup améliorée du premier au troisième test : passant de 74.750 kilogrammes au premier test, à 82.900 au second test, puis 91.930 au troisième test.
3.2.2. Test ergométrique

La fréquence cardiaque, la VO2 max., le quotient respiratoire et le seuil anaérobie n'ont pas varié.

L'économie, au seuil anaérobie, s'est améliorée au fil des tests: elle passe de 1,16 à 1,02 puis 1,07. Ces chiffres dégagent une tendance à l'amélioration et permettent de supposer une meilleure utilisation des ressources physiques.

La vitesse maximale atteinte par le coureur passe de seize à dix-sept kilomètres heure entre le premier et le deuxième test de course et se maintient à dix-sept kilomètre heure lors du troisième test.

3.2.2.1. L'avis du spécialiste

N'étant pas nous-mêmes spécialistes des tests ergométriques, nous avons fait appel à M. Frédéric Gazeau, Docteur en sciences de la vie et de la santé à l'Université de Paris V, dont nous reproduisons ici les conclusions à propos des trois tests à l'effort menés à l'institut Athletica à Genève :

"La VO2 max. ainsi que tous les paramètres physiologiques n'ont pas été modifiés.

Par contre l'économie a été très significativement améliorée au seuil anaérobie*. Par la même, l'amplitude des foulées a été très significativement réduite pour une même vitesse. Est-ce que cette adaptation mécanique est responsable de l'amélioration de l'économie ? On ne peut pas l'affirmer sur un seul sujet, mais j'ai personnellement de fortes présomptions.

La VMA est également plus élevée grâce à l'amélioration du rendement."
4. DISCUSSION

Nous déplorons que cette étude ne porte que sur un sujet. Au vu des résultats obtenus il serait très intéressant d'appliquer ce protocole à une population plus importante de sportifs.

Les traitements de Reconstruction Posturale se sont étendus sur quinze semaines seulement; les résultats auraient-ils été plus encourageants suite à un traitement plus long ? Nous ne pouvons que nous poser la question.

Le test du développé couché présente un résultat tout à fait intéressant : les kilogrammes soulevés passent de 74,950 à 91,930. Toutefois, ce résultat est à nuancer. En effet, le patient souffrait d'une douleur à l'épaule droite, douleur qui, sans aucun doute, gênait l'exécution du mouvement. Le symptôme a disparu suite au traitement, et cette disparition, à elle seule, peut expliquer l'amélioration du résultat obtenu.

Une autre hypothèse serait que les trois tests successifs ont suffit à entraîner le sujet et améliorer sa capacité physique au développé couché. La réponse est probablement une combinaison des deux hypothèses.

Cependant, il est un autre élément de réponse explicative à cette amélioration.

La baisse du tonus réaliserait une normalisation de la balance musculaire, les muscles agonistes et antagonistes exprimant leurs capacités de façon rééquilibrée. Nous pourrions comparer cela à une voiture que l'on voudrait faire rouler avec le frein à main serré quand le tonus musculaire est élevé et sans frein à main lorsque le tonus est normalisé.

Les deux facteurs ont probablement joué un rôle dans l'élévation du nombre de kilogrammes soulevés.

La fréquence cardiaque, la VO2max., le seuil anaérobie et le quotient respiratoire n'ont pas changé à la suite du traitement, ce qui confirme que pour améliorer la puissance de la
machine, il faut travailler la puissance elle-même, pour améliorer les performances de course… il faut courir.

Par contre, l'économie au seuil anaérobie* et la VMA se sont améliorées, ce qui signifie, même si la performance pure n'a pas changé que le coût énergétique de la course a baissé.

La première hypothèse explicative possible serait que les mouvements de grande amplitude sont limités, voire empêchés par l'excès de tonus postural.

Toutefois, l'amplitude des foulées de course a diminué de test en test, ce qui prêche plutôt en défaveur de cette théorie.

Une autre explication envisageable est que la normalisation du tonus musculaire, obtenue par les séances de Reconstruction Posturale, améliore la balance musculaire entre muscles agonistes et antagonistes et rend, de facto, le mouvement économique grâce à l'utilisation plus appropriée des muscles concernés par l'activité choisie.

Le mouvement, libéré du frein que représente l'excès de tonus, peut se faire plus facilement, sans parasite et à un moindre coût énergétique.

De plus, il est admis que l'hypertonie des chaînes musculaires a pour conséquence l'inhibition des muscles isolés. La baisse du tonus musculaire et la levée de l'inhibition consécutive peut représenter une autre ébauche d'explication à l'amélioration des résultats constatée.
La Reconstruction Posturale tend à rendre au sujet sa morphologie normale et à réduire les dysmorphismes* dus à l'excès de tonus dans la chaîne musculaires ; en récupérant des axes articulaires optimaux, il est raisonnable de penser que l'on améliore le fonctionnement des articulations. Chez le patient testé, les articulations des pieds, de la colonne lombaire et de la colonne cervicale se sont approchées d'une morphologie normale et ainsi travaillent dans de meilleures conditions, réduisant l'effort musculaire nécessaire à leur mise en mouvement.

5. CONCLUSIONS

Nous avons tenté d'objectiver les améliorations proprioceptives ressenties par une personne traitée en Reconstruction Posturale.

Cette étude de cas nous a permis d'observer des améliorations morphologiques notables chez le sujet testé. Dans le même temps, le patient décrit des sensations proprioceptives positives pendant l'effort.

 Nous relevons, lors de nos tests, une augmentation importante du nombre de kilogrammes soulevés lors du développé couché, une amélioration de la vitesse maximale aérobie, un meilleur rendement du corps à l'effort et une très nette tendance au raccourcissement de l'amplitude des foulées ce qui, vraisemblablement, explique l'amélioration de l'économie au seuil anaérobie.

Un test limité à une seule personne, ne nous permet pas de conclure à la totale validité de nos hypothèses, mais nous incite à soupçonner que le traitement de Reconstruction Posturale influence positivement certains éléments de la performance sportive.
Pour citer M. GAZEAU "il vaudrait la peine de chercher sur un plus large échantillon de coureurs…"

Nous avons sondé un aspect de la performance sportive, toutefois, le sujet qui s'est prêté à cette étude parle aussi d'autres éléments améliorés à la suite de son traitement de Reconstruction Posturale : d'une plus grande habileté lors de mouvements techniques, en football par exemple. Il pourrait donc s'avérer intéressant de rechercher les effets objectifs de la Reconstruction Posturale sur la coordination ou l'habileté sportive.
BIBLIOGRAPHIE

ELLESTAD M. Epreuve d'effort, Principes et pratique. édit. Frison Roche, 1998, 26; 40; 47; 60; 174-175; 178; 501.

BILLAT V. Course de fond et performance, Aptitude physique, biomécanique, organisation de l'entraînement. Coll. APS Chiron Sport, 27-49; 66-74; 87-98; 103-180.

GAZEAU F. Prédiction du délai de fatigue par la modification mécanique de la foulée en course à pied. Thèse, Doctorat en Science de la vie et de la santé, Université de Paris V, 1998.

NISAND M. Introduction à la Reconstruction Posturale, Bulletin de l'institut de Reconstruction Posturale.
LEXIQUE

Bloc fonctionnel : zone corporelle dont tous les éléments sont interdépendants.
On distingue deux blocs fonctionnels : le bloc supérieur comprenant la tête, la colonne vertébrale jusqu'à T7, les membres supérieurs et la ceinture scapulaire. Le bloc inférieur, comprenant la colonne vertébrale en dessous de T7, la ceinture pelvienne et les membres inférieurs.

Bilan : ensemble de tests effectués par le reconstructeur afin de déterminer l'orientation de son traitement ultérieur. Comprend un bilan morphologique, un bilan dynamique. Lors du bilan morphologique, le patient se tient debout, les deux pieds joints bord à bord, et le reconstructeur répertorie tous les dysmorphismes apparents. Le bilan dynamique comprend un test en appui quadrupédique, une série de manoeuvres en décubitus dorsal, et un test en position assise.

Clé : manœuvre spécifique qui engendre instantanément et à distance une réponse évoquée inéluctable et éventuellement une ou des réponses aléatoires.

Dysmorphismes : déformation de l'appareil locomoteur, acquise (versus héréditaire), spontanée (versus induite par un agent exogène), constante (versus transitoire), non traumatique (consécutive à l'hypertonie physiologique des chaînes musculaires).

Manœuvre : sollicitation active qui, du fait de l'hypertonie des chaînes musculaires, induit des réponses évoquées à distance.
Mouvement de grande amplitude relative : cette notion, propre à la Reconstruction Posturale, regroupe tout mouvement physiologique réalisé dans la course maximale possible, toute tentative de grand mouvement qui serait empêché par un obstacle mécanique ou une inhibition réflexe, ainsi que tout effort pour ramener un article ou une suite d'articles vers la morphologie normale. Ce mouvement, du fait de l'hypertonie des chaînes musculaires, va provoquer à distance une réponse évoquée. On préfèrera souvent à ce vocable, celui d'induction ou de sollicitation active inductrice.

Posture : ensemble de manœuvres, maintenues dans le temps et comportant obligatoirement une manœuvre aggravante.

Réponse évoquée : comportement anormal et transitoire dont l'expression la plus classique est biomécanique et se manifeste par des contractions volontaires, des contractions involontaires induites et par l'hypertonie induite.

Sollicitation active inductrice : sollicitation active dans l'amplitude maximale possible, qui, du fait de l'hypertonie des chaînes musculaires, provoque à distance des réponses évoquées.

Seuil anaérobie : moment où l'individu doit mobiliser ses glycogènes musculaires et hépatiques pour maintenir l'effort. La production de CO2 augmente alors fortement, ce qui amène le QR proche de 1.

Proprioception : sensations issues du corps et qui renseignent sur l'attitude, le mouvement, l'équilibre, etc.
ANNEXES
ANNEXE I

Bilan détaillé avant traitement

a) Face (fig. 3)

Les cinquièmes orteils sont en varus et soulevés du sol des deux côtés, les autres orteils sont en varus et griffe à droite et en griffe à gauche. Les deux pieds présentent une déformation en coup de hache à hauteur des cuboïdes, plus importante à droite. Le bord médial du pied droit est concave ;
les pieds sont plutôt de type creux avec une ferme médiale marquée ;
il n'y a pas de contact entre les deux membres inférieurs de la cheville jusqu'au haut des cuisses des deux côtés ;
les genoux sont en varus et en rotation médiale des deux côtés, de plus les vastes médiaux sont en contraction très apparente des deux côtés ;
le bassin est translaté vers la droite ;
le ventre paraît bombé malgré la minceur du sujet ;
la ligne intermamelonnaire est oblique de haut en bas et de gauche à droite ;
le mamelon gauche est bombé sur une étroite zone latéro-sternale ;
les clavicules sont très apparentes des deux côtés : la clavicule droite à basculé vers l'avant, la gauche, qui est oblique vers le dehors et le haut, vers l'arrière ;
les muscles sterno-cléido-mastoidiens sont très apparents des deux côtés ;
la gorge est proéminente entre les muscles ;
les deux épaules sont visibles et comme poussées vers l'avant, l'épaule droite est plus basse que la gauche ;
Les membres supérieurs sont éloignés du corps et ne présentent pas de contact avec le bassin. L'avant-bras gauche est en pronation ;

b) Profil droit (fig. 5)

La tête du cinquième métatarsien est enfoncée dans le sol alors que l'orteil lui-même n'est pas en contact avec le sol ;

les autres orteils sont en griffe à l'exception du gros orteil ;

le bassin est en antéversion ;

le contour postérieur du dos est masqué par le membre supérieur droit qui est tiré en arrière et dont le coude est en flexion ;

l'épaule et la hanche sont alignées, alors que le tragus de l'oreille est avancé, le genou et la cheville ont reculé. L'alignement des segments corporels est analysé, toujours en référence au paragraphe, sur la base d'une ligne verticale qui joint le tragus de l'oreille, l'acromion, le grand trochanter, le centre de l'articulation du genou et la malleolé latérale ;

la ligne verticale partant du nez tombe en avant du pied d'un carré et demi selon les lignes du tableau ; la gorge est avancée ;

le mamelon gauche est apparent de la troisième côte à l'appendice xiphoïde ;

la ligne sous mamillaire est verticalisée ;

la ligne sous mamillaire est convexe et présente une dépression latérale correspondant à la contracture du muscle transverse supérieur de l'abdomen ;

le pilier du bloc inférieur se situe à la fesse qui est l'article le plus reculé du profil droit ;

le pilier inférieur du bloc supérieur se situe à la pointe de l'omoplate.
c) Profil gauche (fig. 7)

La tête du cinquième métatarsien est enfoncée dans le sol alors que l'orteil est décollé du sol ;

les orteils sont en griffes à l'exception du gros orteil ;
sur le contour postérieur, la fesse droite (partie inférieure), la cuisse sur toute sa longueur, ainsi que le haut du mollet sont visibles ;

le contour postérieur droit du dos, de L3 à la pointe de la scapula, est visible ;

le bassin est en antéversion ;

le tragus de l'oreille tombe en avant, la hanche et le genou tombent en arrière, la cheville tombe largement en arrière de la ligne verticale citée en référence dans l'exposé du profil droit ;

la vertical du nez au sol tombe en avant du pied d'un carré selon les lignes du tableau et la gorge est avancée et blanchie ;

la partie distale de l'ulna est saillante et la peau blanchie par la saillie de l'os ;

le pilier du bloc inférieur se situe à la fesse ;

le pilier du bloc supérieur se situe à l'épine de l'omoplate.

d) dos (fig. 1)

la projection des malléoles latérales au sol est plus éloignée du calcanéum que la projection des malléoles médiales ;

les bases des cinquièmes orteils sont soulevées du sol des deux côtés ;
les membres inférieurs ne présentent pas de contact sur toute leur longueur et sont en varus de façon plus prononcée aux genoux ;

le contour latéral droit du thorax présente un léger coup de hache à la hauteur de L1 ;

les pointes des scapulae sont saillantes des deux côtés ;

une dépression est visible sur la colonne en T8;

le membre supérieur droit est tiré en arrière et est à distance du thorax ;

le membre supérieur gauche est tiré en arrière et à distance du thorax, l'avant-bras en pronation.

e) positon plantigrade quadrupédique

le patient espace et soulève les talons, plie les genoux pour faire le test. La colonne lombaire présente une légère gibbosité gauche, la colonne thoracique une légère gibbosité droite. La région comprise entre T3 et C6 présente plusieurs plis transversaux.

f) décubitus dorsal

L'étude des clés et manœuvres standards ont permis de confirmer l'existence de courbures, de type scoliotique, thoraco-lombaire et cervico-thoracique gauche, d'une courbure thoracique droite. D'autre part, selon la modélisation des flèches, la flèche inférieure présente un point d'impact L4-5 et une sortie sous l'angle de Sigaud gauche. La flèche supérieure entre en C5-6, ces vertèbres sont très enfoncées à la palpation, et la sortie est sans conteste sur le thorax gauche, région mamelonnaire et latéro-sternale.
g) position assise

la griffe des orteils est augmentée ;
la ferme médiale se creuse davantage alors les calcanéums partent en varus important :
la rotation médiale des deux genoux s'accentue ;
l'alignement occiput-scapulum-sacrum est difficile, la tête reste projetée en avant ;
la respiration est gênée par la fermeture de la glotte ;
le recul de la tête induit un recul du sacrum par la pointe.

Ce bilan permet de dégager une modélisation des deux flèches :
l'une inférieure qui entre dans la région para vertébrale de L5 et ressort dans la zone péri ombilicale gauche ;
l'autre supérieure qui entre au niveau de C5 à droite et qui ressort dans la zone thoracique gauche, à hauteur du mamelon.

Ce qui donne une image classique de lordose lombaire à convexité gauche et de lordose cervicale à convexité gauche avec une zone de transition augmentée de ~T6 à ~T12
ANNEXE II

Fig 1 : de dos avant traitement …

Fig 2 : de dos après traitement

Fig 3 : de face avant traitement

Fig 4 : de face après traitement
Fig 5 : profil droit avant traitement

Fig 6 : profil droit après traitement

Fig 7 : profil gauche avant traitement

Fig 8 : profil gauche après traitement
ANNEXE III

Bilan détaillé après traitement

a) Face (fig. 4)

Les cinquièmes orteils sont plus proches du sol des deux côtés, les varus et griffes ont diminué voire disparu ;
le bord médial du pied droit est moins concave ;
la ferme médiale est moins marquée et les pieds ont un aspect plus allongé ;
l'espace entre les cuisses a légèrement diminué ;
la rotation médiale et les varus des genoux sont moins marqués ;
le bassin est mieux centré ;
la région péri-ombilicale paraît moins bombée ;
la ligne intermamelonnaire est quasiment horizontale ;
les clavicules sont moins apparentes ;
les muscles sterno-cléido-mastoïdiens sont moins apparents et la gorge n'est plus visible entre les muscles ;
les épaules paraissent moins tirées en arrière et la droite presque à la même hauteur que la gauche ;
les membres supérieurs se sont rapprochés du thorax touchant presque le bassin.

b) Profil droit (fig. 6)

Le cinquième orteil s'est approché du sol ;
les orteils ne sont plus en griffe ;
le membre supérieur droit est réaligné sur le thorax et ne masque plus le contour postérieur du dos, la flexion du coude est réduite ;
le bassin est en antéversion moins prononcée ;
l'épaule, la hanche, le genou sont quasiment alignés, alors que le tragus de l'oreille a reculé et que la cheville a avancé ;
la verticale du nez au sol tombe moins loin en avant du pied et la gorge a reculé ;
le sein gauche est moins apparent ;
la ligne sus-mamillaire est plus proche de quarante-cinq degrés ;
la ligne sous-mamillaire est rectiligne et la dépression latérale correspondant à la contracture du transverse de l'abdomen a disparu.

c) Profil gauche (fig. 8)

Le cinquième orteil est plus porche du sol ;
les autres orteils se sont allongés et ne présentent plus de griffe ;
sur le contour postérieur, seule la fesse droite reste légèrement visible, alors que la cuisse et la partie supérieure du mollet droit ont disparu ;
la ligne postérieure du dos droit se devine à peine ;
l'antéversion du bassin a régressé ;
la ligne sus-mamillonnaire est plus proche d'une ligne oblique à quarante-cinq degrés ;
la ligne sus-mamillonnaire est plus harmonieuse et rectiligne ;
l'oreille, l'épaule, la hanche, le genou sont à peu près alignés, ne reste que la cheville qui se situe, de façon peu prononcée, en arrière de la ligne verticale de référence, citée dans l'exposé du bilan détaillé d'avant traitement ;

la ligne verticale reliant le nez au sol tombe moins loin en avant des pieds et la gorge a reculé.

d) Dos (fig. 2)

Les apophyses styloïdes des cinquièmes orteils se sont rapprochées du sol ;
les cuisses sont légèrement plus proches, le varus des genoux a un peu régressé, la rotation médiale des genoux est moins importante ;
le bord latéral droit du thorax est plus rectiligne ;
les pointes des scapulae sont moins visibles ;
la dépression sur la colonne a disparu ;
les deux membres supérieurs sont plus proches du thorax et du bassin ;
L'appui quadrupédique, le bilan dynamique et la position assise n'ont pas été testés à la fin du traitement.
ANNEXE IV

Photographie illustrant le port du masque pendant le test sur tapis roulant
ANNEXE V

Photographies illustrant développé couché
ANNEXE VI

COMPTES RENDUS DES TESTS ERGOMÉTRIQUES
BILAN 1

TYPE DE TEST: Triangulaire pour la détermination du Seuil anaérobie et de la Puissance Maximale Aérobie

ERGOMÈTRE: Tapis roulant

PROTOCOLE:
V1 (10 km); V2=2 km/h (3 min); V3=3 km/h (4 min); V4=4 km/h (3 min); V5=5 km/h (3 min); V6=6 km/h (3 min); V7=7 km/h (2 min); V8=8 km/h (2 min); V9=9 km/h (2 min); V10=10 km/h (2 min)

NOM: Adressse:
PRENOM:

Année de naissance: 1961
Poids: 65,8
Taille: 176
Date du test: 20.05.99

Vitesse (km/h)
10
11
12
13
14
15
16

Économie (lca/kgmn)
0,99
1,16
1,06
1,06
1,16
1,06
1,06

Amélioration (mmHg/min)
165
176
183
183
187
187

Amélioration (mmHg/min)
1,00
1,19
1,40
1,40
1,49
1,51
1,59

Amélioration (mmHg/min)
33,15
42,45
46,04
46,04
50,92
52,24
54,62

RESULTATS PHYSIOLOGIQUES, INDICES DE FRÉQUENCE CARDIAQUE:

Indice de la performance
- Consommation maximale d'oxygène (VO2 max.) = 54,92 ml/kg/min
- Fréquence cardiaque maxi. = 184 pulsations/min
- Vitesse Max Aérobie (VMA) = 16 km/h
- Vitesse au seuil anaérobie = 180 pulsations/min
- Fréquence cardiaque au seuil anaérobie = 12,5 km/h
- Pourcentage de VMA au seuil anaérobie = 76,1 %
- Coût Energétique au seuil anaérobie = 1,06 kcal/kg/min

BILAN:
- 100 % du Seuil anaérobie: 160 pulsations/min
- 90 % du seuil anaérobie: 175 pulsations/min
- 85 % du seuil anaérobie: 168 pulsations/min
- 75 % du seuil anaérobie: 150 pulsations/min

F. GAZEAU

86, rue des Contamines CH-1200 GENÈVE Tél (4122) 704 32 50 Fax (4122) 704 32 52 athletica@ephe.unige.ch
BILAN 2

TYPE DE TEST : Triangulaire pour la détermination du Seuil anaérobie et de la Puissance Maximale Aerobe
ERGOMETRE : Tapis roulant
PROTOCOLE :
V0 (10 mn) ; V0+2 km/h (3 mn) ; V0+3 km/h (4 mn) ; V0+4 km/h (2 mn) ; V0+5 km/h (3 mn) ; V0+6 km/h (3 mn)
V0+7 km/h (2 mn) ; V0+8 km/h (2 mn) ; V0+9 km/h (2 mn) ; V0+10 km/h (2 mn)

NOM :
PRENOM :
Adresse :
Année de naissance : 1961
Poids : 66.8
Taille : 170
Date du test : 12.08.99

RESULATTS PHYSIOLOGIQUES, INDICES DE FREQUENCE CARDIAQUE :

Indice de la performance
* Consommation maximale d'oxygène (VO2 max.) = 54.5 ml/kg/min
* Fréquence cardiaque max. = 193 pulsations/min
* Vitesse Max Aerobe (VMA) = 17 km/h

Fréquence cardiaque au seuil anaérobie
* Vitesse au seuil anaérobie = 170 pulsations/min
* Pourcentage de VMA au seuil anaérobie = 12.5 %
* Coût Energetique au seuil anaérobie = 73.5 kcal/kg/min

BILAN
100 % du Seuil anaérobie : 170 pulsations/min
90 % du seuil anaérobie : 162 pulsations/min
85 % du seuil anaérobie : 153 pulsations/min
75 % du seuil anaérobie : 145 pulsations/min

F. GAZEAU
BILAN 3

TYPE DE TEST : Triangulaire pour la détermination du Seuil anaérobie et de la Puissance Maximale Aérobie

ERGOMÈTRE : Tâche roulant

PROTOCOLE :
- V0 (10 mn) ; V0+2 km/h (3 mn) ; V0+3 km/h (4 mn) ; V0+4 km/h (3 mn) ; V0+5 km/h (3 mn) ; V0+6 km/h (3 mn) ; V0+7 km/h (2 mn) ; V0+8 km/h (2 mn) ; V0+9 km/h (2 mn) ; V0+10 km/h (2 mn)

NOM :

PRENOM :

Adresse :

Année de naissance : 1961

Poids : 66

Taille : 176

Date du test : 11.11.99

<table>
<thead>
<tr>
<th>Vitesse (km/h)</th>
<th>Fréquence cardiaque (bpm)</th>
<th>F.G.</th>
<th>Amplitude (mètres)</th>
<th>VO2 (ml/kg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>103</td>
<td>108</td>
<td>148</td>
<td>0.94</td>
</tr>
<tr>
<td>11</td>
<td>105</td>
<td>109</td>
<td>143</td>
<td>0.98</td>
</tr>
<tr>
<td>12</td>
<td>105</td>
<td>109</td>
<td>174</td>
<td>1.00</td>
</tr>
<tr>
<td>13</td>
<td>106</td>
<td>110</td>
<td>178</td>
<td>1.01</td>
</tr>
<tr>
<td>14</td>
<td>107</td>
<td>110</td>
<td>183</td>
<td>1.04</td>
</tr>
<tr>
<td>15</td>
<td>108</td>
<td>112</td>
<td>189</td>
<td>1.05</td>
</tr>
<tr>
<td>16</td>
<td>109</td>
<td>113</td>
<td>193</td>
<td>1.08</td>
</tr>
<tr>
<td>17</td>
<td>110</td>
<td>115</td>
<td>195</td>
<td>1.09</td>
</tr>
</tbody>
</table>

RESULTATS PHYSIOLOGIQUES, INDICES DE FREQUENCE CARDIAQEU

<table>
<thead>
<tr>
<th>Indices de la performance</th>
<th>Valeurs</th>
<th>Unité</th>
<th>Appréciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation maximale d’oxygène (VO2 max) =</td>
<td>55</td>
<td>ml/kg/min</td>
<td>bon</td>
</tr>
<tr>
<td>Fréquence cardiaque maxi =</td>
<td>185</td>
<td>pulsations/min</td>
<td>moyen</td>
</tr>
<tr>
<td>* Vitesse Max Aérobie (VMA) =</td>
<td>17</td>
<td>km/h</td>
<td>moyen</td>
</tr>
<tr>
<td>Fréquence cardiaque au seuil anaérobie =</td>
<td>174</td>
<td>pulsations/min</td>
<td>pas un critère de performance</td>
</tr>
<tr>
<td>Vitesse au seuil anaérobie =</td>
<td>12</td>
<td>km/h</td>
<td>moyen</td>
</tr>
<tr>
<td>% Pourcentage de VMA au seuil anaérobie =</td>
<td>76.6</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>% Coût Énergétique au seuil anaérobie =</td>
<td>1.02</td>
<td>kcal/kg/m</td>
<td></td>
</tr>
</tbody>
</table>

BILAN :

- 100 % du Seuil anaérobie : 174 pulsations/min
- 90 % du seuil anaérobie : 163 pulsations/min
- 85 % du seuil anaérobie : 150 pulsations/min
- 75 % du seuil anaérobie : 140 pulsations/min

F. GAZEAU
ANNEXE VII

Commentaires du patient à propos du traitement de Reconstruction Posturale et de ses effets

1. Point de départ

J'ai commencé la Reconstruction Posturale après une pratique sportive d'environ 15 ans. J'ai fait un diplôme de maître d'éducation physique. Je ne pratique aucune activité de sportif d'élite mais beaucoup de sports différents avec mes élèves, avec une pratique un peu plus assidue du football en salle.

J'ai commencé il y a environ 10 ans la pratique du stretching afin d'améliorer ma récupération ainsi que pour éviter les blessures.

J'ai pratiqué le stretching postural pendant environ une année quotidiennement, puis une pratique de stretching quotidien environ pendant deux ans.

Lors de la pratique du stretching, j'ai surtout apprécié un gain de temps dans la récupération et pour la pratique du stretching postural un net gain dans la proprioception. C'est à mon avis la pratique qui m'a le plus apporté.

Néanmoins le gain de souplesse pure et d'amplitude du mouvement ont été à mon avis assez faibles, bien qu'il me soit impossible de dire ce qui ce serait passé si je n'avais pas pratiqué.

Dans ma pratique, les besoins de s'étirer ont diminué et je n'ai besoin que de un ou deux exercices pour me sentir à l'aise. Par contre j'ai eu petit à petit l'impression de "tourner
en rond", ne sentant plus d'amélioration dans ma pratique et ne voyant plus de réelles "nouveautés" dans les cours auxquels j'assistais.

2. Traitement

J'ai commencé la Reconstruction Posturale avec des légères douleurs aux hanches et genoux et à l'épaule droite ainsi qu'une fatigue très marquée aux pieds le lendemain des journées chargées.

Les premières séances sont très impressionnantes. Les positions à prendre paraissent simples mais extrêmement difficiles à réaliser pendant une période de plusieurs minutes. Il y a eu une sudation importante malgré l'immobilité. Certains mouvements sont très éprouvants nerveusement et on aimerait y mettre fin dès qu'ils commencent.

Après les premières séances les effets ont été pour moi considérables.

Les mouvements sportifs sont plus faciles, plus déliés, et la course a immédiatement gagné en vitesse et en facilité.

Cet élément est resté mais d'autres perceptions plus intéressantes à mon avis sont apparues plus tard dans le traitement (environ au deuxième mois).

L'habileté générale s'est améliorée. Par exemple la manipulation du ballon de football avec le "mauvais pied", celui avec lequel en principe, on shoote moins fort et avec lequel on est moins habile. Les mouvements dans les sports de raquettes (badminton, tennis,
tennis de table) sont devenus très économiques (moins de mouvements parasites, moins de force utilisée pour un mouvement).

La fatigue générale après les cours a diminué très fortement, surtout après la pratique du football.

Il est à noter que le besoin de pratiquer le stretching après les cours a disparu comme si la pratique hebdomadaire de reconstruction suffisait à la récupération.

3. Tests

J'ai effectué en plus des tests de course sur tapis roulant un test concernant la force des bras.

Un premier test a été effectué au début du traitement, l'autre à la fin.

Test 1 : développé couché sur une machine

Il s'agissait de lever la charge maximale une seule fois avec échauffement préalable et montée progressive jusqu'au maximum.

1er test: 74 kg 750 gr.

2ème test: 82 kg 900 gr.

3ème test: 91 kg 930 gr.

Il est à noter que la réduction progressive de légères douleurs dans l'épaule droite durant le traitement, puis leur disparition, a certainement facilité l'exercice dès le deuxième test.
3. Conclusion

Il m'est difficile d'émettre des certitudes concernant les performances pures. Le développé couché s'améliore, mais le fait que des douleurs se soient réduites durant le traitement peuvent en être la cause.

Par contre au niveau proprioceptif les sensations sont évidentes. Il y a une amélioration au niveau de la gestuelle dans l'activité sportive et une facilitation des mouvements. Les efforts sont plus faciles à réaliser. La première impression d'avoir plus de facilité dans la pratique sportive s'est confirmée au fur et à mesure du traitement.

La récupération en est facilitée sans autre technique ainsi que l'envie de pratiquer qui revient.

Concertant le traitement lui-même, on ne peut pas parler d'un plaisir, bien que celui-ci soit présent après chaque position. Les positions sont difficiles à réaliser et l'effort est constant, à la fois musculaires et nerveux.

Les postures anciennes deviennent plus faciles à prendre mais le travail reste difficile. Mais dès qu'une nouvelle posture apparaît le travail est à nouveau à recommencer.

Mais on ressent un plaisir certain après chaque posture. Une détente et un sentiment de bien-être. C'est aussi le cas à la fin de la séance, mais pas toujours. On a parfois quelques frissons et un besoin de s'alimenter ou de boire.

Dans la salle de gymnastique, les efforts consentis donnent des résultats au niveau pratique avec un mouvement qui paraît plus facile, plus économique, et une envie accrue de le faire encore longtemps.

C'était mon objectif et il est atteint.